Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Viral, Parasitic, Bacterial, and Fungal Infections: Antimicrobial, Host Defense, and Therapeutic Strategies ; : 847-861, 2022.
Article in English | Scopus | ID: covidwho-2281421

ABSTRACT

Recent outbreak of novel coronavirus COVID 19 as pandemic has threatened mankind and revealed the drawbacks in medical science. Finding innovative ways to treat a disease without generating resistance in pathogens is the need of the hour. Probiotics are commensal microorganisms that reside in the body and confer health benefits to the host. Till date, they have been used merely as food supplement that would enhance digestion. But research shows that they also have effects on the immune system of their host and can be used effectively as an immunomodulator in several diseases like bacterial, viral, cancerous, and autoimmune disorders. This chapter gives a brief insight into the role played by probiotics in enhancing immune response against the cited diseases. © 2023 Elsevier Inc. All rights reserved.

2.
Cell Commun Signal ; 20(1): 131, 2022 08 29.
Article in English | MEDLINE | ID: covidwho-2021304

ABSTRACT

During SARS-CoV-2 infection, an effective immune response provides the first line of defense; however, excessive inflammatory innate immunity and impaired adaptive immunity may harm tissues. Soluble immune mediators are involved in the dynamic interaction of ligands with membrane-bound receptors to maintain and restore health after pathological events. In some cases, the dysregulation of their expression can lead to disease pathology. In this literature review, we described current knowledge of the basic features of soluble immune mediators and their dysregulation during SARS-CoV-2 infections and highlighted their contribution to disease severity and mortality. Video Abstract.


Subject(s)
COVID-19 , Adaptive Immunity , Humans , Immune System , Immunity, Innate , SARS-CoV-2
3.
Immunol Lett ; 248: 119-122, 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1983240

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly pathogenic infection responsible for the world pandemic in 2020. COVID-19 is characterized by an increased number of critically ill patients with a high risk of health care system collapse. Therefore, the search for severity biomarkers and potential therapies is crucial. In this study, we evaluated SARS-CoV-2 -induced cytokines, cytokines receptors and growth factors profile, in critical COVID-19 patients admitted in intensive care unit (ICU) aiming to identify potential biomarkers and therapeutic targets. We designed a prospective study enrolling 62 adults with severe COVID-19 during the first two Brazilian COVID-19 waves (from May to July 2020 and December 2020 to May 2021), convenience samples recruitment in first 24 hours and then, every 4 days until day 20 of ICU admission from a tertiary hospital in São Paulo, Brazil. Controls were healthy blood donors. Whole blood was used to evaluate 17 cytokines, cytokines receptors and growth factors. Due to low mortality rate, we used the need of mechanical ventilation as primary endpoint. In our analysis, we found a different pattern in soluble CD137 (sCD137) in critically ill patients with COVID-19, with a direct relationship between increased levels and worse clinical outcome. sCD137 was related with increased risk of mechanical ventilation and World Health Organization (WHO) clinical score for disease severity. CD137 is a tumor necrosis factor receptor (TNF) family member, mainly responsible for T-cell activation. Soluble isoforms of immune checkpoints competitively regulate function of their membrane-bound counterparts. Our study demonstrated the onward increase in sCD137 levels during severe SARS-CoV-2 infection and its correlation with worse outcomes, suggesting sCD137 as a potential reliable severity biomarker.

4.
J Clin Med ; 11(12)2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1884242

ABSTRACT

Identifying patients' immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections.

5.
Front Immunol ; 13: 870283, 2022.
Article in English | MEDLINE | ID: covidwho-1793011

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2. During T-cell activation, the immune system uses different checkpoint pathways to maintain co-inhibitory and co-stimulatory signals. In COVID-19, expression of immune checkpoints (ICs) is one of the most important manifestations, in addition to lymphopenia and inflammatory cytokines, contributing to worse clinical outcomes. There is a controversy whether upregulation of ICs in COVID-19 patients might lead to T-cell exhaustion or activation. This review summarizes the available studies that investigated IC receptors and ligands in COVID-19 patients, as well as their effect on T-cell function. Several IC receptors and ligands, including CTLA-4, BTLA, TIM-3, VISTA, LAG-3, TIGIT, PD-1, CD160, 2B4, NKG2A, Galectin-9, Galectin-3, PD-L1, PD-L2, LSECtin, and CD112, were upregulated in COVID-19 patients. Based on the available studies, there is a possible relationship between disease severity and increased expression of IC receptors and ligands. Overall, the upregulation of some ICs could be used as a prognostic biomarker for disease severity.


Subject(s)
COVID-19 , Humans , Ligands , Prognosis , Receptors, Immunologic/metabolism , SARS-CoV-2
6.
Int Immunopharmacol ; 108: 108697, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1739816

ABSTRACT

Monocytes play a major role in the initial innate immune response to SARS-CoV-2. Although viral load may correlate with several clinical outcomes in COVID-19, much less is known regarding their impact on innate immune phenotype. We evaluated the monocyte phenotype and mitochondrial function in severe COVID-19 patients (n = 22) with different viral burden (determined by the median of viral load of the patients) at hospital admission. Severe COVID-19 patients presented lower frequency of CD14 + CD16- classical monocytes and CD39 expression on CD14 + monocytes, and higher frequency of CD14 + CD16 + intermediate and CD14-CD16 + nonclassical monocytes as compared to healthy controls independently of viral load. COVID-19 patients with high viral load exhibited increased GM-CSF, PGE-2 and lower IFN-α as compared to severe COVID-19 patients with low viral load (p < 0.05). CD14 + monocytes of COVID-19 patients with high viral load presented higher expression of PD-1 but lower HLA-DR on the cell surface than severe COVID-19 patients with low viral load. All COVID-19 patients presented decreased monocyte mitochondria membrane polarization, but high SARS-CoV-2 viral load was associated with increased mitochondrial reactive oxygen species. In this sense, higher viral load induces mitochondrial reactive oxygen species generation associated with exhaustion profile in CD14 + monocytes of severe COVID-19 patients. Altogether, these data shed light on new pathological mechanisms involving SARS-CoV-2 viral load on monocyte activation and mitochondrial function, which were associated with COVID-19 severity.


Subject(s)
COVID-19 , Monocytes , Biomarkers/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Mitochondria/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Receptors, IgG/metabolism , SARS-CoV-2 , Viral Load
7.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444118

ABSTRACT

The PD-L1/PD-1 immune checkpoint axis is the strongest T cell exhaustion inducer. As immune dysfunction occurs during obesity, we analyzed the impact of obesity on PD-L1/PD-1 expression in white adipose tissue (WAT) in mice and in human white adipocytes. We found that PD-L1 was overexpressed in WAT of diet-induced obese mice and was associated with increased expression of PD-1 in visceral but not subcutaneous WAT. Human in vitro cocultures with adipose-tissue-derived mesenchymal stem cells (ASC) and mononuclear cells demonstrated that the presence of ASC harvested from obese WAT (i) enhanced PD-L1 expression as compared with ASC from lean WAT, (ii) decreased Th1 cell cytokine secretion, and (iii) resulted in decreased cytolytic activity towards adipocytes. Moreover, (iv) the implication of PD-L1 in obese ASC-mediated T cell dysfunction was demonstrated through PD-L1 blockade. Finally, (v) conditioned media gathered from these cocultures enhanced PD-L1 expression in freshly differentiated adipocytes, depending on IFNγ. Altogether, our results suggest that PD-L1 is overexpressed in the WAT of obese individuals during IFNγ secretion, leading to T cell dysfunction and notably reduced cytolytic activity. Such a mechanism could shed light on why adipose-tissue-infiltrating viruses, such as SARS-CoV-2, can worsen disease in obese individuals.


Subject(s)
Adipose Tissue, White/metabolism , B7-H1 Antigen/biosynthesis , Gene Expression Regulation , Mesenchymal Stem Cells/cytology , Obesity/metabolism , T-Lymphocytes/immunology , Animals , COVID-19/immunology , Cell Differentiation , Coculture Techniques , Humans , Immunohistochemistry , Inflammation , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred C57BL , Obesity/immunology , SARS-CoV-2 , T-Lymphocytes/cytology
8.
Biomed Hub ; 6(1): 48-58, 2021.
Article in English | MEDLINE | ID: covidwho-1247449

ABSTRACT

We report the disparate clinical progression of a couple infected by SARS-CoV-2 based on their immune checkpoint (IC) levels and immune cell distribution in blood from admission to exitus in patient 1 and from admission to discharge and recovery in patient 2. A detailed clinical follow-up accompanied by a longitudinal analysis of immune phenotypes and IC levels is shown. The continuous increase in the soluble IC ligand galectin-9 (Gal-9) and the increment in T-cell immunoglobulin and mucin domain-containing 3 (TIM-3) protein in T cells in patient 1 suggests an activation of the Gal-9/TIM-3 axis and, subsequently, a potential cell exhaustion in this patient that did not occur in patient 2. Our data indicate that the Gal-9/TIM-3 axis could be a potential target in this clinical setting, along with a patent effector memory T-cell reduction.

9.
Int J Mol Sci ; 22(5)2021 Feb 28.
Article in English | MEDLINE | ID: covidwho-1120888

ABSTRACT

Immunotherapy is a highly emerging form of breast cancer therapy that enables clinicians to target cancers with specific receptor expression profiles. Two popular immunotherapeutic approaches involve chimeric antigen receptor-T cells (CAR-T) and bispecific antibodies (BsAb). Briefly mentioned in this review as well is the mRNA vaccine technology recently popularized by the COVID-19 vaccine. These forms of immunotherapy can highly select for the tumor target of interest to generate specific tumor lysis. Along with improvements in CAR-T, bispecific antibody engineering, and therapeutic administration, much research has been done on novel molecular targets that can especially be useful for triple-negative breast cancer (TNBC) immunotherapy. Combining emerging immunotherapeutics with tumor marker discovery sets the stage for highly targeted immunotherapy to be the future of cancer treatments. This review highlights the principles of CAR-T and BsAb therapy, improvements in CAR and BsAb engineering, and recently identified human breast cancer markers in the context of in vitro or in vivo CAR-T or BsAb treatment.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy/methods , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Female , Humans , Immunotherapy, Adoptive/methods , Molecular Targeted Therapy , Receptors, Chimeric Antigen/immunology , SARS-CoV-2/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
10.
Heliyon ; 6(12): e05635, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1059962

ABSTRACT

Increased cytokine levels, acute phase reactants and immune checkpoint expression changes have been described in patients with Coronavirus Disease 2019 (COVID-19). Here, we have reported a monocyte polarization towards a low HLA-DR and high PD-L1 expression after long exposure to proteins from SARS-CoV-2. Moreover, CD86 expression was also reduced over SARS-CoV-2 proteins exposure. Additionally, T-cells proliferation was significantly reduced after stimulation with these proteins. Eventually, patients with long-term SARS-CoV-2 infection also exhibited a significant blockade of T-cells proliferation.

11.
Int J Biol Sci ; 16(14): 2479-2489, 2020.
Article in English | MEDLINE | ID: covidwho-721623

ABSTRACT

The emergence of SARS-CoV-2 virus and its associated disease COVID-19 have triggered significant threats to public health, in addition to political and social changes. An important number of studies have reported the onset of symptoms compatible with pneumonia accompanied by coagulopathy and lymphocytopenia during COVID-19. Increased cytokine levels, the emergence of acute phase reactants, platelet activation and immune checkpoint expression are some of the biomarkers postulated in this context. As previously observed in prolonged sepsis, T-cell exhaustion due to SARS-CoV-2 and even their reduction in numbers due to apoptosis hinder the response to the infection. In this review, we synthesized the immune changes observed during COVID-19, the role of immune molecules as severity markers for patient stratification and their associated therapeutic options.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Sepsis/physiopathology , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Biomarkers , Blood Coagulation Disorders/immunology , COVID-19 , Cytokines/metabolism , Humans , Immune System , Immunity, Innate , Interferons/metabolism , Lymphopenia/immunology , Pandemics , Phenotype , Platelet Activation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL